
3 Conservation Laws, Constitutive Relations,

and Some Classical PDEs

As a topic between the introduction of PDEs and starting to consider ways
to solve them, this section introduces conservation of mass and its differential
form. For specific physical situations, constitutive relations must be intro-
duced. We give here the basic advection, diffusion, and combined advection-
diffusion cases that we will be working with throughout these Notes.

We have also included a brief discussion of shock conditions and boundary
conditions, which we will cycle back to later in the course. On page 8 we
give a summary of what you should try to get out of this section.

3.1 Background on Classical Models Involving PDEs:
One Space Dimension

Most of the classical models come from the use of conservation principles
and constitutive relations relevant to a physical situation being investigated.
Assuming various limits hold, differential form of the principles lead to PDEs
from which analysis can be done on them, and numerical approximations can
be developed. It all boils down to the power of calculus in the end. We will
illustrate some of these in the context of one space dimension.

Consider a single quantity (mass, energy, bugs, vehicles, a chemical in
some non-moving fluid, or simply think of it as “stuff”), and let

ρ = ρ(x, t) be the density of this quantity (mass per unit volume)

so the amount of this quantity at location x at time t is ρ(x, t)Adx, where
we think of a thin tube of uniform cross-section of cross-sectional area A (see
Figure 1).

Remark : We assume there is a large enough amount of our ‘stuff’ around
to consider continuum ideas, that is, the quantities defined here exist, are
continuous in its variables, and any limits employed are assumed to exist.

Next consider

φ = φ(x, t) is the flux of our quantity at location x at time t.
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Figure 1: Domain image for the conservation argument

That is, it measures the amount of quantity crossing a unit section at x
at time t per unit time. Thus, Aφ(x, t) is the amount of our stuff crossing
section of tube at x at time t. Let

S = S(x, t)=rate our stuff is being created at x per unit area at time t.

Now consider an arbitrary interval [a, b]. The conservation of mass law states
that the rate of change of total amount of the quantity in a segment [a, b]
must equal the net rate at which it flows out of the interval, plus the rate
at which it is being created/destroyed within the segment [a, b]. In symbols,
since we assume A is constant,

d

dt

∫ b

a

ρ(x, t)Adx = Aφ(a, t)− Aφ(b, t) +

∫ b

a

S(x, t)Adx (1)

or ∫ b

a

∂ρ

∂t
(x, t)dx = −

∫ b

a

∂φ

∂x
(x, t)dx+

∫ b

a

S(x, t)dx

or ∫ b

a

{∂ρ
∂t

(x, t) +
∂φ

∂x
(x, t)− S(x, t)}dx = 0 (2)

Lemma: Let f be a continuous function defined on an interval [A,B]. If,

for every subinterval (a, b) ⊂ [A,B],
∫ b
a
f(x)dx = 0, then f ≡ 0 in [A,B].

Proof is left as an exercise.
Given that the interval (a, b) in (2) is arbitrary, then by the Lemma we

have
∂ρ

∂t
(x, t) = −∂φ

∂x
(x, t) + S(x, t) (3)
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Figure 2: Pure advection is really a translating of initial data

So, at a location x the amount of stuff changes due to stuff moving around
(first term on the right side) plus stuff being either created or destroyed (the
second term on the right side). With S ≡ 0, (3) becomes the differential
form of the conservation principle.

Remark: How is the equation changed if we assume instead that A = A(x) ≥
A0 > 0, i.e. A is not assumed constant?
While (1) is the codified conservation principle (when S ≡ 0), (3) is more
restrictive form because of the continuity condition. However, it is (3) that
is used in practice. Note that for the single equation (3) there are two un-
knowns, ρ and φ. This is where constitutive relations come in the modeling.

Now consider a few examples.

Example: pure advection or linear transport : Let S ≡ 0 and the flux
be proportional to the density: φ = cρ. (Constant c will have units of length
over time so it is a speed of propagation of the signal.) Then (3) becomes

∂ρ

∂t
+ c

∂ρ

∂x
= 0. (4)

Equation (4) is a first order, linear PDE, and represents pure advection of
the initial disturbance ρ(x, 0) = ρ0(x). Hence, a solution to the equation is
ρ(x, t) = ρ0(x − ct), assuming ρ0 is a differentiable function defined on the
whole real line. Such a solution is called a traveling wave solution, and
represents a right-moving wave if c > 0, and a left-moving wave if c < 0.
(See figure 2.)
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Example: traffic flow theory : In the most elementary version of traffic flow
theory, ρ represents traffic density (the number of vehicles per unit length
of highway), and φ is the traffic flow rate (φ(x, t) is the number of vehicles
passing a given point x at time t). Here highway means a unidirectional
roadway of infinite length, and with no entrances or exits (think of a very
long tunnel or bridge). Then an “equation of state” (constitutive relation)
might specify that flux is a function of density only, that is φ = φ(ρ). A
typical shape is given by figure 3. Now ∂φ

∂x
= dφ

dρ
∂ρ
∂x

. Define the local wave

speed as c(ρ) := dφ/dρ, then (4) becomes

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0 . (5)

This is a nonlinear first-order PDE for the traffic density (and is analo-
gous to one-dimensional gas dynamics). We could consider incorporating
entrances/exits by adding a source term S on the right-hand side of (5).

Example: Fickian diffusion : Fick’s law states that the flux is proportional
to the gradient of the density. In its simplest form this implies φ = −D ∂ρ

∂x
,

where D > 0 is a constant diffusivity coefficient. So the flow, due to the
sign convention, will go from places of high density to places of low density.
Substituting this into (3) yields

∂ρ

∂t
−D∂2ρ

∂x2
= S(x, t), (6)

which is the (nonhomogeneous) diffusion equation.(See figure 4.)

Special case: the 1D heat equation
If one is concerned with measuring heat flow, then heat energy is measured
through temperature u, in some material with material properties c, the
specific heat parameter, and k, the thermal conductivity. Then ρ in (3) is
replaced by ρcu, here ρ notationally means a constant density of the mate-
rial. Now the appropriate form of Fick’s law, called Fourier’s law (in one
dimension), is φ = −k∂u/∂x. Then, in the case of no heat sources, (3)
becomes

ρc
∂u

∂t
=

∂

∂x

{
k
∂u

∂x

}
. (7)

Equation (7) becomes equivalent to (6) (assuming k is a constant, and S ≡ 0)
if we define D := k/ρc. Then D is called the thermal diffusivity. We will
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Figure 3: This is the fundamental graph of traffic theory

Figure 4: Diffusion spreads the data out, “forgetting” the information content
in the data in the absence of source terms, i.e. S ≡ 0.

generally solve problem using the form of equation (6) rather than (7), but
keep these definitions in mind.

Remark : There is a probabilistic approach to deriving the diffusion equation
that starts with a random walk model. This leads into a notion of Brown-
ian motion made famous by Einstein. Hence, at the microscale, diffusion is
about random processes, while at the macroscale, where averaging has taken
place, diffusion follows a conservation principle. The connection with random
processes means there are strong connections between PDEs and probability
theory (and hence application areas such as mathematical finance) that we
will not have space to pursue in these Notes.

Example: advection-diffusion : This case assumes we have both processes
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Figure 5: The combination of mechanisms tends to both translate and spread
the initial data

working, so φ = φadv + φdiff = uρ − D ∂ρ
∂x

, where u is a material speed
parameter, D is a diffusivity. Here we might interpret the situation that
a solute is being carried along (advected) with a bulk movement of fluid
(solvent), say with fluid velocity u = u(x, t), and ρ here means concentration.
Now (3) becomes, with S ≡ 0,

∂ρ

∂t
+

∂

∂x
(uρ) = D

∂2ρ

∂x2
. (8)

Example: Chemotaxis : A large number of insects and animals rely on acute
sense of smell for conveying information between members of the species, em-
ploying chemicals called pheromones. At the cellular level, motility of cells,
such as in wound healing, is often controlled by specific chemical gradients.
These cases lead to modeling a flux due to a chemical attractant (or repel-
lent). In the presence of a gradient of attractant a = a(x, t) (We’ll stick to a
one dimensional spatial description here, but the mechanism is particularly
applicable inR2 orR3), gives rise to movement of cells, of density u = u(x, t),
up the gradient. This suggests a flux Jchemotaxis = bu ∂a/∂x, where b = b(a)
is an affinity sensitivity coefficient that may depend on the attractant con-
centration. If we consider the total flux as J = Jdiffusion + Jchemotaxis =
−D∂u/∂x + bu∂a/∂x, then (3) becomes, again setting S ≡ 0, and letting
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Figure 6: Population of amoebae be-
ginning to aggregate via a chemical
signal, i.e. chemotaxis. (Figure from
Lin and Segel’s Mathematics Applied
to Deterministic Problems in the Nat-
ural Sciences.)

b,D = constants,
∂u

∂t
= D

∂2u

∂x2
− b ∂

∂x
(u
∂a

∂x
).

In this case we would need an equation for the attractant, for example,

∂a

∂t
= D

∂2a

∂x2
+ k1u− k2a.

Such systems lead to very interesting patterns of behavior. See a case of this
in figure 6.

Example: 1D diffusion of a population : In population biology and other
disciplines concerned with the growth and movement of “populations”, there
is usually a growth law (constitutive relation) under consideration. If u(t)
represents the population of some species at time t, a couple of dynamic law
examples would be

1. Malthusian or exponential growth: du
dt

= ru (r=fixed net rate of growth)

2. Verhulst or logistic growth: du
dt

= ru(1− u/umax)

The second case recognizes limited resources so that unbounded growth is not
possible (as in the Malthusian case). These models are further generalized
to allow (random) movement of the population. The simplest cases are given
by

∂u

∂t
= D

∂2u

∂x2
+ ru (9)

∂u

∂t
= D

∂2u

∂x2
+ ru(1− u/umax) (10)
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Equation (9) will be easily solved by methods introduce in these Notes, partly
to see what effect the ru term has on the solution behavior. Equation (10)
is Fisher’s equation, which was first investigated in the 1920’s with regard to
the propagation of an undesirable gene within a population. It is a nonlinear
PDE, and one member of a large class of equations called reaction-diffusion
equations that crop up in all sorts of science and engineering subdisciplines.
However, techniques for analyzing such equations will not be developed in
these Notes.

Summary
You should understand the basics of getting the differential form of the con-
servation principle. The Lemma will be used again later in the course, so
you should know its statement. You should know what is meant by pure ad-
vection, diffusion, and advection-diffusion, and the character of the solutions
as t increases.

Exercises

(1) In the 1D derivation of the derivative form of conservation law, (3),
what would the analogous result if the cross-sectional area A is a smooth
function of x, A = A(x)? What would the diffusion equation look like if
φ = −k∂ρ/∂x, with k > 0 being a constant, and S ≡ 0?

(2) In the pure advection case (4), if c = 5 and initially ρ(x, 0) = ρ0(x) =
e−x

2
, what would be the solution ρ(x, t)? Since ρ0(x) is a “Gaussian bump”

moving out along a characteristic line, where is the top of the bump at time
t = 10?
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